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ABSTRACT
This paper outlines the application of harmonic-balance

stability analysis to the design of oscillator circuits.
Small-signal stability criteria and large-signal operation
are considered.  An improved picture of the stable regions
of circuit operation and determination of physically stable
operating points is demonstrated.

INTRODUCTION
Analysis of stability using the invariant K and B1

factors has been a standard method of microwave circuit
design since reported in [1] .  However, K and B1 are
based on finding impedances in the source or load plane
which result in reflection coefficients greater than one on
the opposite plane at a given frequency.  Information of
the potential instabilities at other frequencies, as well as a
more rigorous system analysis, are lacking in the K and
B1 factors.  Instead, a small-signal method is pursued
here to determine the existence of the right-hand plane
(RHP) zeros of the system using Nyquist’s analysis [2].

The existence of RHP zeros indicates that a small
perturbation of the system will result in a permanent
deviation with an asynchronous transient (an abrupt
frequency change will take place).  This behavior
indicates that the circuit has the potential to oscillate and
one of the detected zeros in the RHP will likely determine
the approximate frequency of oscillation.  This analysis
provides detection of asynchronous stability in the DC
sense (termed DC Nyquist Analysis) since the circuit is
linearized about its DC bias point with all RF sources
killed.

Once the detection of RHP zeros is accomplished, there
remains the question of the large-signal solution of the
circuit.  Microwave oscillator circuits using broadband
active devices with broadband feedback circuits often
exhibit two or more resonant frequencies where
oscillation may take place due to the periodic nature of

distributed resonators.  Harmonic-balance simulation
yields results only for the simulation frequency selected,
and it will be shown that harmonic-balance analysis can
produce several oscillatory solutions.  A method is
needed to determine which of these solutions are
physically realizable as opposed to numerically
simulated.  A method based on [3] has been incorporated
into Microwave Harmonica [4] for the detection of
bifurcations in the parameterized sweep analysis of an
arbitrary circuit.  This analysis determines the
synchronous instability of a system.  Synchronous
instability indicates that a small perturbation of the
system will result in a permanent deviation with a
synchronous transient (no abrupt frequency changes will
take place).  The information derived from a synchronous
analysis include:
• the point at which an oscillator starts (termed a Hopf

bifurcation)
• oscillator drop-outs, e.g. as in a VCO
• hysteresis critical points (termed turning points)

The next two sections of the paper describe the DC
Nyquist analysis and application examples.  The two
following sections discuss the synchronous stability
analysis and application examples.

DC NYQUIST ANALYSIS
Formal Nyquist analysis performs an integration of the

system characteristic equation in the complex plane as
shown in Figure 1.  The path of integration begins at
0+-j∞, proceeds to 0++j∞ (avoiding any zeros on the jω
axis), and follows a semicircle of infinite radius back to
0+-j∞.  If there are natural frequencies in the RHP, these
will be enclosed by the path of integration, while those in
the LHP will not.  By observing the result of the
integration, it can be determined if there are natural
frequencies in the RHP and therefore determine whether
the circuit is asynchronously unstable.
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The implementation of Nyquist’s analysis does not
perform the integration explicitly, but provides similar
information.  The determinant of the closed-loop system
under study is computed from a low frequency to a high
frequency and plotted on the complex plane.  If the path
crosses the negative real axis and encircles the origin,
then a natural frequency (σ+jω) exists in the right-hand
plane and the system is asynchronously unstable.  This is
shown in Figure 2 for the cases where σ < 0
(corresponding to a zero in the LHP) and σ > 0
(corresponding to a zero in the RHP).
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Figure 1: Nyquist integration path
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Figure 2: Plot of the system determinant for a stable
(σ < 0) and unstable (σ > 0) case.

The frequency sweep should be performed to a high
enough frequency where it is known that the circuit will
not exhibit any resonant features or to the fmax of the
active device.  A very wide frequency range, often nine or
ten decades, is used to capture low frequency resonances
due to bias circuitry and high frequency resonances due to
parasitics and periodic structures.  Clearly a simple
regular step sweep is not appropriate.  Circuit resonances
are often of sufficient Q that a regular-step sweep can

easily miss the resonant frequency entirely unless very
fine sweep points are selected or the frequency of the
resonance is known a priori.  To alleviate these problems,
an adaptive frequency sweep which monitors the rate of
change of the determinant and adjusts the frequency delta
accordingly is used.  The analysis is more efficient than a
simple linear or logarithmic sweep.

APPLICATION OF DC NYQUIST ANALYSIS
An example application is demonstrated using a

MESFET frequency doubler shown in Figure 3.  The
Nyquist plot is shown in Figure 4 where the frequency
sweep was from 1Hz to 20GHz. As  seen, the trace does
not cross the negative real axis indicating there are no
natural frequencies in the RHP and the circuit is stable
(σ < 0).

Figure 3: 5GHz MESFET frequency doubler.

Figure 4: Nyquist plot of the frequency doubler in the
range of 1 Hz to 20 GHz.  Asynchronous stability is
indicated since the path does not cross the negative
real axis and it does not encircle the origin.
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To demonstrate asynchronous instability, a MESFET
oscillator shown in Figure 5 is investigated.  It is known
by design that this circuit has a natural frequency in the
RHP near 5GHz and is therefore asynchronously
unstable.  The Nyquist plot from 1 Hz to 20 GHz is
shown in Figure 6.  Since the path crosses the negative
real axis, the analysis has indicated asynchronous
instability.  It is interesting to note that it crosses the axis
three times possibly indicating three natural frequencies.
We will later show the analysis of these three points.

Figure 5: 5GHz MESFET oscillator.

8.19GHz

16.9GHz

4.72GHz

Figure 6: Nyquist plot of the oscillator.

SYNCHRONOUS STABILITY ANALYSIS
Synchronous stability analysis uses harmonic-balance

analysis to trace the solution path to determine
bifurcations of a circuit operating condition.
Mathematically, a bifurcation takes place when the zeros
of a circuit exchange sign on their real parts, or when the
solution path splits into two or more distinct curves.
From a circuit designer’s point-of-view, these bifurcations
are characterized by the following:

• Change from a stable DC operating point to a
oscillatory regime

• Hysteresis in a physically observable circuit response
• Physical observation of a subset of computed

operating regimes

Two important concepts in the determination of
synchronous stability are derived from differential
equation theory. The first is simply stated [5]:

The stability of two points on the solution path curve of a
nonlinear function are the same if there is no bifurcation
point between the two points.

The second concept helps determine the stability when
crossing a bifurcation point and can be summarized as
follows [5]:

Stability is exchanged at a turning point bifurcation.
Stability is maintained at a critical point on the new
solution path in the same direction of the parameter.

Therefore, if we can absolutely determine the
synchronous stability of one point on the solution path,
then we can determine the stability of any point on the
path if the bifurcations are known.  From the circuits
point-of-view, consider Figure 7 where the circuit
response Pout is plotted as a function of a bias source E in
the absence of any RF excitation.  From obvious physical
considerations, point A is physically stable because it is at
rest without any excitation and no observable output.
Point H1 is a Hopf bifurcation point.  Points B and C are
turning points.
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Figure 7: Consideration of a circuit response Pout as a
function of applied DC bias E.
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When a circuit exhibits a characteristic as shown in
Figure 7, the physically observable behavior does not
include the unstable path BC.  A hysteresis curve is then
observed where the output jumps from B to b for
increasing E and from C to c for decreasing E.

APPLICATION OF SYNCHRONOUS STABILITY
An example application demonstrating synchronous

stability is a MESFET oscillator as shown previously in
Figure 5.  Harmonic-balance oscillator analysis finds an
oscillatory regime near 5 GHz at the designed bias point
of Vds = 9 V.  Using the solution path analysis we can
determine the synchronous stability of the oscillator in
two steps:

Step
1

Sweep bias from 9V until the bifurcation
point is reached where oscillation ceases.
This produces a Hopf bifurcation point.

Step
2

Sweep the bias from the end point of Step 1
until 0V where a known physically stable
point is reached.

The result of the analysis is shown in Figure 8. Figure
8A shows the AC output power of the oscillator as the
bias is swept and it undergoes a Hopf bifurcation at 2.2V.
The bias is then swept down to 0V in Figure 8B and an
observable DC output such as Vds is plotted.  At 0V we
know that the system is stable, so a conclusion can be
drawn that the oscillating solution is stable since the path
of Figure 8A is in the same direction as the parametric
bias.

         A    B

Figure 8: Two-step process to determine synchronous
stability of the MESFET oscillator.

When asynchronous stability was discussed for the
MESFET oscillator in Figure 6, it was noted that three
possible unstable frequencies may exist due to the
Nyquist plot crossing the negative real axis three times.
We can investigate this behavior to fully determine the
stable operating region of this oscillator.  The three
resonant frequencies are estimated at the frequency where

the Nyquist trajectory crosses the negative real axis and
using oscillator analysis, we can obtain Figure 9 showing
what appear to be three oscillatory regimes.

Figure 9: Three oscillatory regimes for the oscillator.

These three solution paths are all synchronously stable,
however, we know that only one solution can physically
exist.  The answer lies in the observation that the solution
path at 4.88GHz (top line) has the first Hopf bifurcation
point at 2.2V.  When the bifurcation for the 16.7GHz
solution path or the 7.97GHz solution path occurs at 4.9V
and 6.2V respectively, we are already operating in the
stable 4.88GHz regime.  The introduction of these other
Hopf bifurcations will not modify the state of the first.
Therefore, the natural frequencies introduced by the
16.7GHz and 7.97GHz regimes are asynchronously
unstable and are not physically observable.
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